Endless
  • 🚀README
  • Discovery
    • 🚀Endless Web3 Genesis Cloud
    • 💎Business Model
    • 🎯Vision
    • ✈️Roadmap
    • 🪙Economics
    • 👤Team
      • Yu Xiong
      • Amit Kumar Jaiswal
      • Ned
      • 0xfun
      • Scott Trowbridge
      • Neeraj Sharma LLB
      • Amjad Suleman
      • Binu Paul
      • Eduard Romulus GOEAN
    • ❤️Developer Community
  • Endless Chain
    • Tech Docs
      • Account Address Format
      • Endless Account
      • Endless Coin(EDS)
      • Sponsored Transaction
      • On-Chain Multisig
      • Randomness
      • Safety Transaction
      • Token Locking & Distribution
    • Start
      • Learn about Endless
        • Accounts
        • Resources
        • Events
        • Transactions and States
        • Gas and Storage Fees
        • Computing Transaction Gas
        • Blocks
        • Staking
          • Delegated Staking
        • Governance
        • Endless Blockchain Deep Dive
          • Validator Nodes Overview
          • Fullnodes Overview
          • Node Networks and Synchronization
        • Move - A Web3 Language and Runtime
      • Explore Endless
      • Latest Endless Releases
      • Networks
    • Build
      • Tutorials
        • Your First Transaction
        • Your First Fungible Asset
        • Your First NFT
        • Your First Move Module
        • Your First Multisig
      • Learn the Move Language
        • The Move Book
          • Getting Started
            • Introduction
            • Modules and Scripts
          • Primitive Types
            • Move Tutorial
            • Integers
            • Bool
            • Address
            • Vector
            • Signer
            • References
            • Tuples and Unit
          • Basic Concepts
            • Local Variables and Scope
            • Equality
            • Abort and Assert
            • Conditionals
            • While, For, and Loop
            • Functions
            • Structs and Resources
            • Constants
            • Generics
            • Abilities
            • Uses and Aliases
            • Friends
            • Packages
            • Package Upgrades
            • Unit Tests
          • Global Storage
            • Global Storage - Structure
            • Global Storage - Operators
          • Reference
            • Libraries
            • Move Coding Conventions
        • Advanced Move Guides
          • Objects
            • Creating Objects
            • Configuring objects
            • Using objects
          • Move Scripts
            • Writing Move Scripts
            • Compiling Move Scripts
            • Running Move Scripts
            • Move Scripts Tutorial
          • Resource Accounts
          • Modules on Endless
          • Cryptography
          • Gas Profiling
          • Security
      • Endless Standards
        • Object
        • Endless Fungible Asset Standard
        • Endless Digital Asset Standard
        • Endless Wallet Standard
      • Endless APIs
        • Fullnode Rest API
        • Indexer Restful API
          • Indexer Installation
        • GRPC Transaction Stream
          • Running Locally
          • Custom Processors
            • End-to-End Tutorial
            • Parsing Transactions
          • Self-Hosted Transaction Stream Service
      • Endless SDKs
        • TypeScript SDK
          • Account
          • SDK Configuration
          • Fetch data from chain
          • Transaction Builder
          • HTTP Client
          • Move Types
          • Testing
          • Typescript
        • Rust SDK
        • Go SDK
      • Endless CLI
        • Install the Endless CLI
          • Install On Mac
          • Install On Alibaba Cloud
          • Install On Linux
          • Install On Windows
        • CLI Configuration
        • Use Endless CLI
          • Working With Move Contracts
            • Arguments in JSON Tutorial
          • Trying Things On-Chain
            • Look Up On-Chain Account Info
            • Create Test Accounts
          • Running A Local Network
            • Running a Public Network
          • Managing a Network Node
      • Integrate with Endless
        • Endless Token Overview
        • Application Integration Guide
      • Endless VSCode extension
      • Advanced Builder Guides
        • Develop Locally
          • Running a Local Network
          • Run a Localnet with Validator
    • Nodes
      • Learn about Nodes
      • Run a Validator and VFN
        • Node Requirements
        • Deploy Nodes
          • Using Docker
          • Using AWS
          • Using Azure
          • Using GCP
        • Connect Nodes
          • Connect to a Network
        • Verify Nodes
          • Node Health
          • Validator Leaderboard
      • Run a Public Fullnode
        • PFN Requirements
        • Deploy a PFN
          • Using Pre-compiled Binary
          • Using Docker
          • Using GCP 🚧 (under_construction)
        • Verify a PFN
        • Modify a PFN
          • Upgrade your PFN
          • Generate a PFN Identity
          • Customize PFN Networks
      • Bootstrap a Node
        • Bootstrap from a Snapshot
        • Bootstrap from a Backup
      • Configure a Node
        • State Synchronization
        • Data Pruning
        • Telemetry
        • Locating Node Files
          • Files For Mainnet
          • Files For Testnet
          • Files For Devnet
      • Monitor a Node
        • Node Inspection Service
        • Important Node Metrics
        • Node Health Checker
    • Reference
      • Endless Error Codes
      • Move Reference Documentation
      • Endless Glossary
    • FAQs
  • Endless Bridge
    • Intro to Endless Bridge
    • How to use bridge
    • Liquidity Management
    • Faucet
    • Developer Integration
      • Contract Integration
        • Message Contract
        • Execute Contract
      • Server-Side Integration
        • Message Sender
        • Example of Message Listener Service (Rust)
        • Example of Token Cross-Chain (JS)
  • Endless Wallet
    • User Guide
    • Basic Tutorial
    • FAQs
    • MultiAccount
    • SDK
      • Functions
      • Events
  • GameFi
    • Intro
    • GameFi & Endless
  • Endless Modules
    • Stacks
    • Storage
    • Module List
  • Endless Ecosystem
    • Intro
    • Show Cases
    • App Demo
  • Whitepaper
  • Endless SCAN
    • User Guide
  • MULTI-SIGNATURE
    • Multi-Signature User Guide
  • Regulations
    • Privacy Policy
    • Terms of Service
    • Funding Terms - Disclaimer
Powered by GitBook
On this page
  • Tuples and Unit
  • Literals
  • Operations
  • Subtyping
  • Ownership
Export as PDF
  1. Endless Chain
  2. Build
  3. Learn the Move Language
  4. The Move Book
  5. Primitive Types

Tuples and Unit

PreviousReferencesNextBasic Concepts

Last updated 7 months ago

Tuples and Unit

Move does not fully support tuples as one might expect coming from another language with them as a . However, in order to support multiple return values, Move has tuple-like expressions. These expressions do not result in a concrete value at runtime (there are no tuples in the bytecode), and as a result they are very limited: they can only appear in expressions (usually in the return position for a function); they cannot be bound to local variables; they cannot be stored in structs; and tuple types cannot be used to instantiate generics.

Similarly, is a type created by the Move source language in order to be expression based. The unit value () does not result in any runtime value. We can consider unit() to be an empty tuple, and any restrictions that apply to tuples also apply to unit.

It might feel weird to have tuples in the language at all given these restrictions. But one of the most common use cases for tuples in other languages is for functions to allow functions to return multiple values. Some languages work around this by forcing the users to write structs that contain the multiple return values. However, in Move, you cannot put references inside of structs. This required Move to support multiple return values. These multiple return values are all pushed on the stack at the bytecode level. At the source level, these multiple return values are represented using tuples.

Literals

Tuples are created by a comma separated list of expressions inside of parentheses.

Syntax
Type
Description

()

(): ()

Unit, the empty tuple, or the tuple of arity 0

(e1, ..., en)

(e1, ..., en): (T1, ..., Tn) where e_i: Ti s.t. 0 < i <= n and n > 0

A n-tuple, a tuple of arity n, a tuple with n elements

Note that (e) does not have type (e): (t), in other words there is no tuple with one element. If there is only a single element inside the parentheses, the parentheses are only used for disambiguation and do not carry any other special meaning.

Sometimes, tuples with two elements are called "pairs" and tuples with three elements are called "triples."

Examples

address 0x42 {
module example {
    // all 3 of these functions are equivalent

    // when no return type is provided, it is assumed to be `()`
    fun returns_unit_1() { }

    // there is an implicit () value in empty expression blocks
    fun returns_unit_2(): () { }

    // explicit version of `returns_unit_1` and `returns_unit_2`
    fun returns_unit_3(): () { () }


    fun returns_3_values(): (u64, bool, address) {
        (0, false, @0x42)
    }
    fun returns_4_values(x: &u64): (&u64, u8, u128, vector<u8>) {
        (x, 0, 1, b"foobar")
    }
}
}

Operations

The only operation that can be done on tuples currently is destructuring.

Destructuring

For tuples of any size, they can be destructured in either a let binding or in an assignment.

For example:

address 0x42 {
module example {
    // all 3 of these functions are equivalent
    fun returns_unit() {}
    fun returns_2_values(): (bool, bool) { (true, false) }
    fun returns_4_values(x: &u64): (&u64, u8, u128, vector<u8>) { (x, 0, 1, b"foobar") }

    fun examples(cond: bool) {
        let () = ();
        let (x, y): (u8, u64) = (0, 1);
        let (a, b, c, d) = (@0x0, 0, false, b"");

        () = ();
        (x, y) = if (cond) (1, 2) else (3, 4);
        (a, b, c, d) = (@0x1, 1, true, b"1");
    }

    fun examples_with_function_calls() {
        let () = returns_unit();
        let (x, y): (bool, bool) = returns_2_values();
        let (a, b, c, d) = returns_4_values(&0);

        () = returns_unit();
        (x, y) = returns_2_values();
        (a, b, c, d) = returns_4_values(&1);
    }
}
}

For more details, see Move Variables.

Subtyping

For example:

let x: &u64 = &0;
let y: &mut u64 = &mut 1;

// (&u64, &mut u64) is a subtype of (&u64, &u64)
// since &mut u64 is a subtype of &u64
let (a, b): (&u64, &u64) = (x, y);

// (&mut u64, &mut u64) is a subtype of (&u64, &u64)
// since &mut u64 is a subtype of &u64
let (c, d): (&u64, &u64) = (y, y);

// error! (&u64, &mut u64) is NOT a subtype of (&mut u64, &mut u64)
// since &u64 is NOT a subtype of &mut u64
let (e, f): (&mut u64, &mut u64) = (x, y);

Ownership

As mentioned above, tuple values don't really exist at runtime. And currently they cannot be stored into local variables because of this (but it is likely that this feature will come soon). As such, tuples can only be moved currently, as copying them would require putting them into a local variable first.

Along with references, tuples are the only other type that have in Move. Tuples have subtyping only in the sense that they subtype with references (in a covariant way).

first-class value
unit ()
subtyping